Lets Talk Bushings

Chapter 6, February 26, 2023, Meeting Edited by Raymond Fowler

With Permission from Gary Combs, NAWCC Field Suitcase Instructor

More Definitions

Bushing holes are the **bearing surfaces** of the clock plate

Typical Example of a worn Bushing

Examples of a Worn Pivot Hole

No Power on Movement

Power applied

Needs bushing

Bushing Replacement Criteria

- In many cases the decision to replace a bushing is a judgment call based on many factors:
 - Degree of wear and/or surface condition
 - Location in train
 - Type of clock
 - Wheel and pinion teeth depthing

Angle of Wheel Arbor Test

•Arbor leans due to bushing wear

Lean criteria is+-5 degrees

Difficult criteria
to judge
*+-5 degrees
*1-3mm plates

•It does work with experience

Which Bushing System KWM or Bergeon?

Both Bushing Systems are:

- **European.**
- Dimensioned in millimeters.
- Can be used with bushing tools.
- Or with an inexpensive hand operated tool.
- **Bushings are not:**
 - Interchangeable, but both Systems offer reamers that adapt bushings to the other's bushing tools.

Both Systems are very good and recommended

Bergeon Bushing Tool

□ Old Add, Same Machine! New Price For 2023 \$1150.

Bergeon Bushings

Bergeon Bushing Guide

Size of Pinion - MM	T	0.3	1	0.15	-	-	1	-	1			-	-	-		_				1200						-											
Thickness of Plates	1.5	15 0			-	-	-	0.43	-	0.5	-	0.55	5	0.6	-	0.65	1000	0.3	0.7	5	0	8	0.81	5	0.5	9	0.95	1		1	1.	1	1	.2	1.3	15	_
Bushing # / Cutter #	833	11	#32	12	12.	1.1	42.4	1.0	-		-		-	-	1	000	Constant of	900	COLUMN 1			9.90		100		1.0				-		-		-		-	_
Thickness of Plates	2				-		10.04	/1	82	13	#35	/1	43	11	-	-	45 /	1	Contra Conte	87	12	1		49	12	#41	/ 2	#11	/ 3					#1	3/3		-
Bushing # / Cutter #			1	-100	1933	1.4	-	-	1415		-	-	-	_	-		1000	-	maria		20012			-				1.11									_
Thiskness of Plates	3	-	-	-		/ 1	-	-	#33	/1	-	_	-	-	458	13	-	_	#39 / 3		1277	84	0/2				1000	842	1.3	84	1/3	84	6 / 3	5 #4	5/3	. #4	6 /
Bushing # / Cutter #	1			1100	-		-	-	wie.	1.2	-	_	-		1200	1	-	1.52	000000	100	1997			1			110										
California and a second			1	-		-	-	-	1.10	/1	-	_	84	/ 1	-	100	85 /	11	Contraction of	82	12		1.1.1	830	12	1.00	1.1.1	#12	13	-				#1	4/3		
Size of Pinion - MM	100	1.4		1.5		1.6	1-	1.65	-	1.7	-	1.70			-		-	-	-		12010	-	1000	-	15.0		2.30										
Thickness of Plates	1.5	-					-	1.00	-	4.1	-	+13	-	1.0	-	1.9	-	- 2	2.	1	2.2	5	2.4	-	2.5	1	2.75		1.13	3		4		5	1	6	1
Bushing # / Cutter #	1222	-	#15	14	8423	14	1000	-	-	-	417	1.0	-		-				-			-		1000		-	- 11										
Thickness of Plates	2			-		-	-	-	-		1411	1.4	-	-	-	-	#19	1.5		#21	1/5		100	#23	15	1.1		#25	16	#23	117						
Sushing # / Cutter #	847	14	848	14	10000	-	150	14	#53	14	-	-	85.2	1.4	45.3		-			-		-		-	-	-	1.1.1										
Thickness of Plates	3		100		-	100		-			-	-	100	1.4	1433	-	194 1	1.3	#55 / 5	Daily I	13	451	1/5	-		#58	15	-			10.11	45	11	1		850	51
Bushing # / Cutter #			#16 .	14		-	1	-	1		#18	14	-			-	120	/ =		421		-				-					_						
	1000		-		-	-	-	-	-	-			*				- CV /	3		194.6	13	-	_	834	1.5	-		826	16	#28	17	421	1/3	#3	0 / 9	100	

Using Drill Press

Checking with Square

Cutting Plate for Bushing

Using Arbor Press

2

A KWM Bushing Tool With Accessories

KWM Bushing Sheet

	В	н	1	.0			1.4			1.7		1.9				2.7			3.0	4.0
Z Pivot	в	D	1.2	1.8	1.8	2.7	3.5	4.7	5.9	5.9	1.8	2.7	3.5	1.8	2.7	3.5	4.7	5.9	8.7	8.7
Diameter	0	R	1.18	1.78	1.78	2.68	3.48	4.66	5.85	5.85	1.78	2.68	3.48	1.78	2.68	3.48	4.66	5.85	8.64	8.64
	r	R	I	п	п	ш	IV	IVa	V	V	п	ш	IV	п	ш	IV	IVa	V	VI	VI
	е	Ν																		
0.07-0.08	0.1		L55																	
0.10-0.12	0.15		L56														Í	S		
0.15-0.17	0.2		L01																	
0.19-0.21	0.25		L57																	
0.23-0.25	0.3		L02		L64				_		L86						- 1			
0.27-0.30	0.35	_	L58		1.00						1.07							Ē	B-	
0.32-0.35	0.4	_	L03		L08						L87						- 1.		<u> </u>	Ĺ
0.38-0.40	0.45	_	1.59		1.00						1.20			1.0.4					<u> </u>	1
0.42-0.45	0.5	-	L04		L09						L32			L94						-
0.48-0.30	0.55		1.05		T 10						1 2 2			1.05						-
0.55-0.55	0.0		1.06		L 10						1.34			1.96				+	-	-
0.57=0.00	0.7		1.07		1 12						1.35			1.97				+	-	-
0.75-0.80	0.9		107	L.61	L13						L36			1.98			-		-	
0.85-0.90	1.0			L62	L65	L14					1.37			2220	1.99		-		-	
0.95-1.00	1.1			L63	L66	L15					1.0 /	L38			L100			-	-	-
1.05-1.10	1.2					L16						L39			L101			-	-	-
1.15-1.20	1.3					L17						L40			L102			-	-	
1.25-1.30	1.4					L18						L41			L103			-	-	
1.35-1.40	1.5					L19						L42			L104					
1.45-1.50	1.6					L20						L43			L105					
1.55-1.60	1.7					L67						L88			L106					
1.65-1.70	1.8					L21						L44			L107					
1.75-1.80	1.9					L68						L89			L108					
1.85-1.90	2.0						L22						L45			L109				
1.95-2.00	2.1						L69						L90			L110				
2.05-2.10	2.2						L23						L46			L111				
2.15-2.20	2.3						L70						L91			L112				
2.25-2.30	2.4						L24						L47			L113				
2.35-2.40	2.5						L71						L92			L114	-			
2.45-2.50	2.6						L25		_				L48			L115	_			
2.55-2.60	2.7	_					L72			1.50			L93			L116		+		-
2.05-2.70	2.0	-					L26	T 120	1 72	L/9			L49			LII7	1 1 4 2		-	-
2.75-2.80	2.9	-						L130	L/3	1.50			-				L143	1 1 1 0	-	-
2.83-2.90	3.0	$+ \Gamma$	TT	4	41.5 I.			L 140	1.28	1.50							L144	L110		
3 10-3 25	3.4		The nur	to use	tnis cn efixed b	art v the		L 140	1.74	1.81							L145	L119		
3 30-3 45	3.6		letter "L	" such a	is L57 ir	the cha	ırt	L142	1.29	1.52							L140	L120		-
3.55-3.65	3.8		Indicates	s the bu	shing nu	mber. T	he		L75	1.82								L122		
3.75-3.85	4.0		number	serves a	s a refill	l number	r		L76	L83								L123	-	-
3.90-4.05	4.2		the corre	ous asso	rtments.	I O Seleo	ct		L30	L53								L124	-	-
4.15-4.25	4.4		the pivo	t, & find	l it size	wieasu			L77	L84								L125	-	
4.35-4.45	4.6		in the ra	nge of s	izes sho	wn in			L31	L54								L126		
4.55-4.65	4.8		column	Z. By re	ading a	cross, yc	ou		L78	L85								L127		
4.75-4.85	5.0		Will fine	the val	rious bu:	shing th	at		1		1					1			L128	1
5.00-5.05	5.2		Select th	ne thickr	prvot. iess of h	ushing I	ov												L129	1
5.15-5.25	5.4		Referrin	g to lett	er "H" ð	k the	-												L130	
5.35-5.45	5.6		correct c	liameter	by the l	letter "D	·".												L131	
5.55-5.65	5.8		After ch	oosing t	he bush	ing, read	1												L132	
5.75-5.85	6.0		which in	orumn t idicates	the size	reamer:	to						1						L133	
5.95-6.05	6.2		Be used	for the	selected	bushing	g.													L134
6.15-6.25	6.4		Reamers	s are ide	ntified b	y Roma	in													L135
6.35-6.45	6.6		numeral	s.															_	L136
6.55-6.65	6.8	11						1	1	1	1		1	1						L137

KWM Bushing Template

	Bohrung - Hole	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5	0,55	0,6	0,7	0,8	0,9	1,0	1,1	1,2	1,3	1,4	1,5	1,6	1,7
10	Höhe-Height 1.0	155	1 1561	1011	1571	1021	1581	1031	1591	1041	1601	1051	1061	1071	161	1621	1631						
	Höhe-Height 14					L64#		1081		1091		L10=	L11#	L12ª	L131	1632	IND	116=	117=	118≡	119=	120=	167=
	Höhe Height 1.9					1861		1871		1323		133=	L34 =	135 1	136 =	137 1	138=	139=	140=	141=	L42=	143=	188=
I	Höhe-Height 2.7		1			100				1941		1954	196"	197ª	1981	199	1100里	L101=	L102=	L103 m	L104	L105m	106
	Masse in Millimeter			•	•		•						•		•	•	۲	۲	•	•		•	•
	Bohrung - Hole	1,8	1,9	2,0	2,1	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,0	3,2	3,4	3,6	3,8	4,0	4,2	4,4	4,6	4,8
	Höhe-Height 1.4	121	168=	122#	169#	123	1703	1240	1710	L25ª	172ª	1261	173*	1271	1287	1741	1297	175*	1761	1307	1777	1317	178
	Höhe Height 1.7			-								1791	1801	1507	1517	1817	1527	1827	1831	1537	1847	1547	185
	Hohe Height 1.9	144	189=	145ª	180a	1460	[91ª	1471	1920	148m	[83ª	1497					121	1					
l	Höhe-Height 2,7	L107ª	1108=	L1093	L110ª	L111a	L112ª	L 113 T	L 114ª	L 115ª	L 116 ¹⁰	[117章		11187	11197	11207	1121	11228	L1231	11247	L1257	11267	1127
1	Measurements in Millimeter	•	•			•		•		•	0	0	0			0	0	0	0	0	0	0	0

This template contains the same info as the table

KWM Bushings

KWM Bushings

1	-	TRO - FF	NPRI	N-BUSI	3 ER HES	0	6	GR	INT	SOR	SET	Ŧ.	
-	Harrison in Distances of the	ality alate	0.7-0,9 mm	1,2-1,3 mm	1.8.1.8 min			Policevilles That see of a	Idea In	7.0.0	1.0.7.8 mm	1.5.1.8	
	Predat. 17 Distant silipite	at Hale	toge Wat	re and Barbak	Ine Humany	1	0	Zisten (C)	tink (Laper	une Ballata	an Manualan	
	2,11 - 0, 10 0,11 - 0,10 0,11 - 0,10	0.1 0.55 0.55 0.3 0.4 0.5 0.4 0.7 0.8 0.7 0.8 0.7 1.0 1.0 1.1	1 (5) (1 (1.00 H 1.09 H 1.10 H 1.12 H 1.12 H 1.13 H 1.13 H 1.13 H 1.13 H	1. 22 11 1. 23 21 11 1. 25 21 11 1. 25 21 11 1. 25 21 11 1. 25 21 11	2 3 4	000	105-100 116-120 126-120 126-120 126-120 126-220 226-220 226-220 226-220 226-220 226-220 226-220 226-220 226-220 226-200 226	·····································		111日の時間の市がの日本の111日の		A A A A A A A A A A A A A A A A A A A

Select a Bushing

Reaming Hole for New Bushing

Reamer in Hole

Hole Ready for Bushing

Inserting Bushing in Hole

Bushing in Hole

Bushings: Final Fit

- **Bush tight and broach to final fit**
- □ Every wheel needs clearance to spin
 - Side shake and end shake
- **D** Broaches
 - Cutting From Both Sides
 - **5**-sided with taper
 - □ To enlarge the bushing hole for pivot clearance
 - □ Used dry
 - Twist with very light pressure to remove a little material at a time
 - **Monitor results often**
 - **•** Maintain upright

- Smoothing
 - **Round with taper**
 - To burnish and harden the bearing surface
 - **Used with oil**
 - Twist with light pressure. Do NOT jam into the bushing

Burnish All Bushing Holes

All bushing holes need to be burnished with a smoothing broach and peg-wood or toothpick

Use oil on smoothing broach

Burnish dry with wooden burnisher

Testing New Bushing

Finally, Test all Wheels in the Train

- □ Final test of the bushing job is to assemble all wheels in each train.
- □ Leave the verge off the time train and the levers out of the strike and chime train.
- Apply a small amount of power and wheels should turn freely.
 If not, look for:
 - Bushings that are too tight
 - Bent pivots
 - Depthing issues
 - Too little end-shake
 - NEED to correct these issues now!

Rathburn (band-aide) bushing tabs and Hole Closing are Destructive Practices

http://masterclockrepair.com/hallofshame.html